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Policy Context:

* Low carbon and renewable fuel policies have developed
around the world
* LCFS (California, North-east states, Canada), RFS (US), Europe (EC)
* Reduce GHGs relative to baseline gasoline ~93 gCO.,e/MJ

* Life cycle assessment (LCA)-based policy
* Some call for a policy on low C materials (e.g., polymers)

* Biofuels and policy context for decarbonizing transportation

energy supply
* Energy Independence and Security Act (EISA)

* Incentives to develop “drop-in fuels”

* Incentives to develop lignocellulosic energy products that
avoid major sustainability risks: Better biofuels
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Fuels and Chemicals from Animal Waste

Sorunmu et al. 2017, ACS Sus Chem & Eng DOI: 10.1021/acssuschemeng.7b01609 4
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Fast PyronS|s of Forest ReS|dues to Renewable Dlesel

Life cycle model development:
* Aspen Plus, Simapro and GIS modeling:

— Feedstock production, collection, transport
— Material/energy balance basis (feedstock conversion);,

* Integration with experimental research:
— Pyrolysis bio-oil blendstock development

* In-situ catalytic pyrolysis products

* Ex-situ catalytic pyrolysis products

— Combustion experiments for

* Non-catalytic pyrolysis products

* Catalytic pyrolysis products




LCA Framework:
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Catalytic Pyrolysis and Upgrading:
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Advanced Bio-oil Markets

Fuel combustion

Fuel cycle

Feedstock Liquid Fuel Vehicle

Production Conversion Operation

- Harvesting equipment - Electricity - Renewable diesel
and energy - Feedstock provides thermal - Value-added chemicals

- Transportation steps energy - Bio-char (co-product)
Feedstocks: Technologies: Transportation fuel/lubricant

- Woody biomass - Fast Pyrolysis or Catalytic market:

(Forest residues) pyrolysis - Substitute for gasoline, diesel,
- Hydrotreating petrochemical (e.g., bio-
- Hydrocracking lubricants)

- Co-products may substitute for
coal or be land applied
(sequestration)



Forest Residue Field
Operations — Maine Woods

* Feller-Buncher
— Fells trees and piles

* Grapple Skidder
— Transports piles to Roadside and Chipper

* Chipper

— Chips biomass A !‘a’ifi '
* Transport [ 1 N | |

*Not accounting for

forest C stocks ), Ve



Life Cycle GHG Emissions
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Sorunmu et al., In Prep




AN

NSNS\

¥ ’
I X
¥ .,

NSNS NN\ -

50-70% 70-90% > 90% X

NN\ // NN

%o

NN /%f/ N\

]

&,

%ﬁw
\..v

%
&7/ Zﬁﬁ

&

Average Cost of catalytic pyrolysis /

=
D
>
&
ad
2
=
2
o
=
_
—
al
p
=
S
p)
O
=
O
-
O
O
LLI

2 8

(1/S) @31 Bui|@s |an4 winwiuly adelany




Effect of SCC on Economic Performance

Diesel
Gasoline

Sorunmu et al., In Prep



Findings
* Low fuels yields for catalytic pyrolysis versus fast
pyrolysis (116 versus 196 L/dry MT)

* High fraction of biochar, very negative GHG
emissions

* Daily catalyst regeneration a significant process
Input and source of GWP

 Economics of both processes only favorable with
valuation of carbon
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Stable pyrolysis oils can serve as densification
hubs for biorefineries
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Forestry Feedstock:

Fertilizer (NPK and lime) ~ Herbicide

Farming operations:
- Establishment
- Maintenance

- Harvest (Felling,
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Life Cycle GHG emissions (g CO2e/MJ)
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Life Cycle GHG Emissions
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